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Abstract

We classify p-harmonic morphisms of twisted product type from complete simply connected
manifolds and polynomiab-harmonic morphisms and holomorphieharmonic morphisms be-
tween Euclidean spaces. We also characterize thgsamonic functions : (M, g) — R whose
level hypersurfaces produce minimal foliationg #f, g) generalizing Baird—Eells’ results on har-
monic morphisms. Among applications, we show that Nil spg@de gni ) and Sol spacéR3, gso)
admit many 1-harmonic submersions and hence many foliations by minimal surfaces. We also prove
that if a complete conformally flat non-flat metgg = F~23"" ; dxi2 on a connected open subset
U of R™ admits one Riemannian er — 1 minimal coordinate plane foliations, thét, g;;) must
be hyperbolic spaced™, x;,2 3" ; dx?) up to a homothety.
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1. Preliminaries

In this paper, all our objects, manifolds, vector fields, and maps are assumed to be smooth
unless otherwise stated.

For p € (1, 00), ap-harmonic maps a mapy : (M, g) — (N, h) between Riemannian
manifolds which is a critical point of thg-energy functional:

1
Epp) = = / Ide|”dx.
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Using the first variational formula we see that a ma p-harmonic if and only if its
p-tension fieldr,(¢) = 0, where

7,(9) = |dp|”12(p) + (p — 2)|dg|”~> de(graddg)
with t2(¢) denoting the tension field @f. When|dg| # 0, we can write
7p() = |dgl” *{z2(¢) + (p — 2) dp(grad In |dg]))}. (1)

A C2mapy : (M, g) — (N, h) is ap-harmonic morphisni it preserves the solutions
of p-Laplace equation in the sense that for anfiarmonic functionf : U — R, defined
on an open subsét of N with ¢~ 1(U) non-empty,f o ¢ : ¢~ 1(U) — R is a p-harmonic
function.

As a generalization of Riemannian submersionspazontally weakly conformahap
isamapy : (M, g) — (N, h) with the property that for each € M at which dp, # 0,
the restriction @y |n, : Hx — Ty N is conformal and surjective, wherg, denotes the
orthogonal complement df, = ker dg, in T, M. We callH, the horizontal an&, the ver-
tical space op atx. Thus we havd M = V, ® H, andg is horizontally weakly conformal
implies that there is a numbeKx) € (0, co) such thati (dp(X), dp(Y)) = 1%(x)g(X, Y)
for any X, Y € H,. This, in local coordinates, is equivalentgH)(E)(p“/axi)(8<p/3/8x.,~) =
12h*f o . Note that at the point € M where &, = 0 we can let.(x) = 0 and obtain a
continuous function. : M — R which is called thelilation of a horizontally weakly con-
formal mapg. A non-constant horizontally weakly conformal majs calledhorizontally
homothetidf the gradient ofA?(x) is vertical meaning thak (1%) = 0 for any horizontal
vector fieldX on M.

It is well known (seq9,13,20,22] that a non-constant map ispgharmonic morphism
if and only if it is a horizontally weakly conformgb-harmonic map. Harmonic maps
and harmonic morphisms are, respectively, the well-known names for 2-harmonic maps
and 2-harmonic morphisms which have been studied extensively. For a detailed account
and references on harmonic morphisms we recommend the recent monfigrapt the
regularly updated bibliograpH5].

2. Someclassifications of p-harmonic morphisms

In recent years, much work has been done (5¢k5]) in constructing and classifying
harmonic morphisms between certain model spaces. For example, it is prd2dd tinat
if o: R™ — (N", h) (n > 3) is a hon-constant harmonic morphism with totally geodesic
fibers, then nV, h) is isometric taR” andg is an orthogonal projectioR™ — R” followed
by a homothety. I1i14] it is showed thap : U — R" (n > 3) is a horizontally homothetic
harmonic morphism with totally geodesic fibers from a connected open suli®ét dien
@ is the restriction of an orthogonal projecti®’" — R”" followed by a homothety. It is
also proved iff16] that any non-constant holomorphic harmonic morphismt — C”
(n > 2) from an open and connected sub&ebf C™ is the restriction of an orthogonal
projection followed by a homothety. Horizontally homothetic submersions generalize the
notion of Riemannian submersions.
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A horizontally homothetic submersion with totally geodesic fibers and integrable hori-
zontal distribution can be characterized as locally the projection of a warped product onto
its second factor (sg8]). More generally, a horizontal conformal submersion with totally
geodesic fibers and integrable horizontal distribution is characteriZ@éd]ias locally the
projection of a twisted product onto its second factor. A horizontally homothetic submer-
sion with totally geodesic fibers and integrable distribution is a harmonic morphism called
a harmonic morphism of warped product tyja$. Recently, Svenssdi28] proves that a
harmonic morphism of warped product type from a complete, simply connected manifold
is globally the projection of a warped product onto its second factor (the universal covering
space of the target manifold) followed by the covering map. In this section, we first classify
all p-harmonic morphisms of twisted product type from complete and simply connected
manifolds generalizing Svensson’s classifica{i®8] on harmonic morphisms of warped
product type. We then give a classification of polynonpiddarmonic morphisms and holo-
morphicp-harmonic morphisms between Euclidean spaces generalizing Gudmundsson and
Sigurdsson’s classification of harmonic morphisms by classifying horizontally homothetic
maps between such spaces.

Theorem 2.1. Letm >n>1,1< p <oo,andg : (M™, g) — (N", h) be a submersive
p-harmonic morphism with totally geodesic fibdargegrable horizontal distributionand
dilation ». Whenp = n, ¢ is assumed to be onto. Suppose thet g) is complete and
simply connected. TheW, g) is isometric to the twisted produét x , -2 N of afiberF of

¢ and the universal covering spadeof N, andg is the projection ontaV followed by the
universal covering map. Furthermqiié p # n, theng is a harmonic morphism of warped
product type and itis the projection of a warped product followed by the universal covering
map

Proof. First, we note byTheorems 3.1 and 3#hat ¢ is ann-harmonic morphism being
horizontally conformal submersion with totally geodesic fibers. It follows that £ n,
then it is a horizontally homothetic harmonic morphism beirgarmonic morphism for
two differentp values. Using Lemma 4.8 {28] we conclude thap is an onto submersion
in any case. LefFy denote the foliation o by the fibers ofp. It is a totally geodesic
foliation by assumption. On the other hand, since the horizontal distributipis@fitegrable
we have another foliatiotFy of M whose leaves are the maximal integral manifolds of
horizontal distribution. By Lemma 3.2 {14], Fp is totally umbilical. SinceFy and Fy

are orthogonal to each other, Theorem [2i6] implies that(M, g) is isometric to a twisted
productF x 2 N with Fy andFy corresponding to the canonical foliations of the product

F x N, whereF = ¢~1(y) is a fiber andV is an integral manifold orthogonal t. It
follows thaty factors through the projectior, : F x,2 N — N andamapr : N — N.

Since M is assumed to be simply connect&(dis also simply connected. Using the fact
thatz = ¢|N is conformal and_emma 3.3in do Carmo[11] we can show that the map
7 : N — N is a covering map and hendeis the universal covering space 8t SinceN

is the universal covering af andy = 7 o 72, a simple computation shows that= 11
Therefore, we obtain the first part of the theorem. Now i n, theng is a horizontally
homothetic harmonic morphism. By the last assertion of Lemma 312|nFy is spherical,
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i.e., each leaves is an extrinsic sphere. So by Corollary[26h (M, g) is isometric to
a warped product and becomes the projection of a warped product onto the universal
covering space oN followed by the covering map. Thus, we complete the proof of the
theorem. O

From the proof ofTheorem 2..wve actually have the following corollary.

Corollary 2.2. Letm > n > 1,and¢ : (M™, g) — (N", h) be a surjective horizontally
conformal submersion with totally geodesic fihentegrable horizontal distributionand
dilation 1 from a complete and simply connected manifold. T&f g) is isometric to the
twisted product x, . N of a fiber F ofg and the universal covering spadeof N, andg
is the projection ontaV followed by the universal covering map

Taking into account of the curvature we obtain the following corollary.

Corollary 2.3. Letg : (M™,g2) — (N",h) (m > n > 2) be a harmonic morphism
of warped product type from a complete and simply connected mariifétt] g) with
sectional curvaturek,; > 0, then(M, g) is isometric to the Riemannian produEtx N
of a fiber F ofp and the universal covering spadéof N, and ¢ is the projection ontaV
followed by the universal covering map which is a homothety

Proof. By Theorem 2.1we know thai M, g) is isometric to the warped produgtx; > N

of a fiber F of ¢ and the universal covering spadeof N, andy is the projection onto

N followed by the universal covering map. It follows frof2] that a complete warped
product with non-negative sectional curvature must be a Riemannian product. From this we
obtain the corollary. O

Notice that inTheorem 2.landCorollary 2.2 besides requiringM, g) to be complete
and simply connected, the usual conditions for the de Rham type of decomposition theorem,
we also assume the mapo have integrable horizontal distribution, totally geodesic fibers,
and to be onto whep = n. These conditions seem a bit strong yet none of them can be
dropped as shown by the following examples.

Example 2.4. Letg : % — $2 be the well-known Hopf fibration. It is an onto harmonic
morphism from complete simply connected manifold with totally geodesic fibers which are
great circles. We know (see e[§]) that the horizontal distribution is nowhere integrable.
The Theorem does not hold in this case since, topologicgilgannot be diffeomorphic to

$1 x §2, the Cartesian product of a fiber and the universal coverirgf of

Example2.5. Lety : R? — Rwith o(x, y) = €* cosy. Itis easily checked thatis an onto
harmonic submersion (hence a submersive harmonic morphism) from a complete simply
connected space. Since the horizontal distribution is one-dimensional it is integrable. It is
also easy to see that the fibers are not totally geodesic in general. The Theorem does not
hold in this case, too. To see this, notice that the fibe= ¢~1(0) is not connected, so,
topologically, F x R cannot be diffeomorphic t&2.
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Example 2.6. Let ¢ : RZ x R3 — $3 be the composition of the orthogonal projection
7 : R? x R® — R3followed by the inverse of the stereographic projectionR3 — $3. It
follows from [24] thate is a 3-harmonic morphism with integrable horizontal distribution
and totally geodesic fibers from a complete simply connected manifold. Note thaiot
onto and the theorem does not hold in this case for the similar topological argument.

We also remark that the curvature conditionGdorollary 2.3is essential, for example,
consider the hyperbolic spaég” of sectional curvature-1 in the upper half-space model.
We know (se¢5]) that the projection off” onto its boundarg”1is a harmonic morphism
of warped product type from a complete and simply connected space filss not
isometric to the Riemannian product of a fiber arféi L.

Now we prove the following theorem which gives a classification of horizontally homo-
thetic maps between Euclidean spaces.

Theorem 2.7. Letp : R" — R" (m > n > 2) be a horizontally homothetic map. Then
is an orthogonal projectioiR™ — R” followed by a homothety

Proof. By [14] we know that for a horizontally homothetic map (M™, g) — (N", h)
(m > n > 2) with dilation > we have
1
grad, <ﬁ)

whereX andY are orthonormal horizontal vector fields #fy X andY are corresponding
p-related vector fields o, and grag(1/2?) denotes the vertical part of the gradient of
1/A2. Since the sectional curvatuky, = Ky = 0 we see from the above equation that
[X,Y]" = 0 and grag(1/A%) = 0 i.e., the horizontal distribution is integrable ahds
constant. Thereforey is, up to a homothety, a Riemannian submersion with integrable
horizontal distribution. Therefore, the foliation ®" determined by the fibers af is a
Riemannian foliation. Applying Theorem 1.3[i82] we conclude that the principal curva-
tures of the leaves (i.e., the fibersg@fare zero and hence the latter are totally geodesic.
Now the statement thatis an orthogonal projection followed by a homothety follows from
Corollary 2.3 O

2

2 N b2 M
Ky(X,Y) = A" Kn(X, Y)_Zl[X’ Y| vy ,

Now we are ready to give a classification of polynompaharmonic morphisms and
holomorphicp-harmonic morphisms between Euclidean spaces.

Theorem 2.8.

(1) Letm >n >2,p e (1,00). If p: R" — R" is a polynomial p-harmonic morphism
then eitherp = 2, and ¢ is a harmonic morphispor p # 2, andg is an orthogonal
projection followed by a homothety

(2) Forn > 1,¢ : C™ — C" is a non-constant holomorphic p-harmonic morphism for
p € (1, o0) if and only ifg is an orthogonal projection followed by a homothety
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Proof. For (1), notice that iy is a p-harmonic morphism then it follows frof22] that it is

a horizontally weakly conformai-harmonic map. On the other hand, sigds polynomial
map, and it is proved ifil] that any horizontally weakly conformal polynomial map

R™ — R" (m > n > 2) has to be harmonic and hence a harmonic morphism. Therefore if
p # 2,theng is both a p-harmonic and a 2-harmonic morphism, whicH28Y, is possible

if and only if ¢ is a horizontally homothetic map. Now usififgpeorem 2.7%ve obtain the
statement. For Statement (2)if= 2 the proof was given ifil6]. If ¢ : C" — C"isa
p-harmonic morphism fop # 2, then it is a horizontally weakly conformatharmonic
map. Noting that a holomorphic map. C" — C" is automatically harmonic we conclude
thaty is also a harmonic morphism because it is a horizontally weakly conformal harmonic
map. A similar argument shows thatis horizontally homothetic and it is an orthogonal
projection followed by a homothety byheorem 2.7 O

Remark 2.9. Note that locally, ap-harmonic morphismp : (M™,g) — (N",h) is a
solution to the following over-determined system of partial differential equations:

ij 09" 3¢P
J

= )2(x)h% 0.
8)6,' 8)6.,' (X) ¢

div(|dgl”~? dg) = 0,
For p = 2, we know (cf[2,23,25) that many polynomial maps: R™ — R” including the
maps given by multiplications of real, complex, quaternionic, and Cayley nhumbers solve
the above equationgheorem 2.&ays that fop # 2, the only polynomial solution is the
special linear map. However, it is proved 2#] that there are many polynomiatharmonic
morphisms when the domain is given a suitable conformally flat metric.

3. p-Harmonic functionsand minimal foliations

The most interesting link amongrharmonic morphisms, minimal foliations, and hori-
zontally homothetic maps between Riemannian manifolds is the following theorem whose
proof underwent several steps. Baird and B&8]Jobtained the theorem for the cgse-= 2.

For p # 2, Statement (I) was announced4, and Statement (ll) is basically a rearrange-
ment of the results ifP] (see alsg30]).

Theorem 3.1. Letm > n > 2andg : (M™, g) — (N", h) be a horizontally conformal
submersion. If

() p = n, theng is p-harmonic map if and only [frp_l(y)}yeN is a minimal foliation of
(M, g) of codimension n
(I If p #£ n, then any two of the following conditions imply the other:one
(a) ¢ is a p-harmonic map
(b) {(p*l(y)}yeN is a minimal foliation of(M, g) of codimension n
(c) ¢ is horizontally homothetic

As noted in[9], for p < 1, the p-energyE, is not a norm andv1? is not a Banach
space; besides, fgr= 1, althoughw -1 becomes a Banach space, itis impossible to derive
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a Euler-Lagrange equation corresponding to critical points of 1-energy. So in general, itis
assumed that > 1 whenp-harmonic maps are studied. However, in the caséM, g) —
R we do have the 1-energy functional:

Ei(fH = /M [Vyldx 2

as in[10], where the authors defined the functional for a certain class of functions defined
on a domain in a Euclidean space. In fact, Bombieri et a[10] called the functions
which are critical points of the functional the functions of least gradient and they show
that the level hypersurfaces of such a function are minimal. This leads to a construction of
minimal graphs which are not hyperplane®ifi for m > 9 and thereby solves the famous
Bernstein’s problem. In conformity with the languageménergy andp-harmonic maps

we adopt the following definition.

Definition 3.2. A submersionf : (M, g) — R is said be Tharmonicif it is a critical point
of the 1-energy functiongR) defined on all functions oM which are submersions.

Lemma3.3. A submersiory : (M, g) — Ris 1-harmonic if and only if thd-tension field
71(f) = 0, where

_ A —g(VEVINIVSD
V7l

with A f denoting the Laplacian of f with the convention thatish, Af = Y"1 ; 82 f/ax?.

1(f) . 3

Proof. Itis well known (see e.d8]) that the Euler—Lagrange equation of the functional
(2)is div(V f/|V f]) = 0. Itis easily checked that

(VS {Af —g(VLV In|VFD}
d = = . 4
v (IVfI) V7] al) )
Thus we obtain the Lemma. O

Now we give the following theorem which generaliZBseorem 3.1

Theorem 3.4. Let f : (M™, g) — R be a submersion. Then

() fis al-harmonic function if and only iff~1(r)},cr is a foliation of(M, g) by minimal
hypersurfaces
(I for p € (1, o0), any two of the following conditions imply the other one
(a) fis a p-harmonic function
(0) {f~1(0)}:er is a foliation of (M, g) by minimal hypersurfaces
(c) fis horizontally homothetic

To proveTheorem 3.4ve need the following two lemmas.
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Lemma 35. Let f : (M™,g) — R be a submersion ang = V/|Vf| denote the
unit normal vector field of the level hypersurfaces of f. Then the following statements are
equivalent

(i) fis horizontally homothetic
(i) df@gradIn|V ) = g(V LV In|Vf]) =0,
(iii) Hessr(n,n) =0,

whereHess (X, Y) denotes the Hessian ¢t
Proof. Since the target manifold is of dimension one ghid a submersion we see that

is a horizontally conformal submersion with dilatiargiven by1? = |df|? = |V f|? =
g(V £ V). Using local coordinateg’} on M we have

(g a (VD) _ g(VEVIVID
IV £ Ve

whered; = d/dx;, fr = 9f/9xx, and Einstein convention of summation is used. On the other
hand, it follows from[31, p. 106]that

sVEVY) _ g(VEVIVID
A IVl

df(gradIn [V £)=(fi dx*) (" 3;(In |V )3 )=

Hess(n, n) =

From the above two equations we have
dfigradIn|V f])) = Hess(n, n) = g(VL V In|V f]). (5)

Note that, in general, a horizontally weakly conformal ngap(M™, g) — (N™, h) with
dilation A given bya? = gV (8p®/dx;) (3¢P /dx )hes = |dg|?/n is horizontally homothetic
if X(x2) = 0 for any horizontal vector fiel& on M. One can easily check that this is
equivalent to ¢(grad In |dg|)) = O. This, together wittiEqg. (5) proves the lemma. O

Corollary 3.6.

() For p € [1, o0) and a submersiorf : (M™, g) — R, the p-tension field of f is given
by

T () = IVFIPHAS + (p — 2 df(grad In |V £]))}. (6)

(I For p, g € [1, 00), a p-harmonic submersiofi : (M™, g) — R is also a g-harmonic
submersion fop # ¢ if and only if f is horizontally homothetic in which case it is
p1-harmonic for anyp1 > 1.

Proof. By (ii) of Lemma 3.5 df(grad In|V f])) = g(V £V In|Vf]). Combining (1)

and (3)we obtain the unified form of the formu(&) for the p-tension field of a submersion
including thep = 1 case, which gives Statement (I). To prove Statement (Il), we know
from (6) that ap-harmonic submersioff is also ag-harmonic submersion if and only if

Af+(p—2dfigradin|Vf]) =0, Af +(g—2)dfgradIn|V f])) =0.
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It follows that df(grad(In |V f])) = 0 sincep # ¢. By Lemma 3.5 f is horizontally
homothetic. Conversely, if is a horizontally homothetig-harmonic submersion, then,
by (6), Af = 0, i.e., f is also a harmonic submersion. Usi(®) again we see thaf is a
p1-harmonic submersion for anyr € [1, oo) hence in particular it is also gharmonic
submersion. O

Lemma3.7. Letf: (M™, g) — R be a submersion angl= V f/|V f| be the unit normal
vector field of the level hypersurfaces afét H(n) denote the mean curvature of the level
hapersurfaces. Then we have

_{Af — dftgradin [V fD)}

(m —1H®n) = —11(f) = 7
n 1(f) V] (7)
Proof. By our convention on Laplace operatar Eq. (8.7) in[31] reads
—Af +Hessg(,n)
(m—1DHmn) =
! V]
UsingEgs. (3) and (5)ve obtain the lemma. O

Now we proceed to provéheorem 3.4

Proof of Theorem 3.4. Statement (1) follows immediately froieq. (7) To prove Statement
(I1), we first note that the statement is true for= 2 by Eq. (7) Forp € (1, 00) \ 2, we
proceed as follows:

e (a) + (b) = (c): Suppose thaf is a p-harmonic function withp € (1, c0) \ 2 and
that{ f ~1(1)};er is a foliation of (M, g) by minimal hypersurfaces. Then, it follows from
Statement (I) thay is a 1-harmonic submersion. Sinpe# 1 by assumption, we apply
(I1) of Corollary 3.6to conclude thay is horizontally homothetic.

e (8 + (¢) = (b): Suppose thay is p-harmonic forp # 1 and thatf is horizontally
homothetic. It follows from (1) ofCorollary 3.6that f is also a 1-harmonic submersion.
Applying Statement (I) we obtain (b).

e (b)+(c) = (a): Itfollows from (b) and Statement (1) thatis a 1-harmonic submersion;
this, together with (c) and (Il) d€orollary 3.6 shows that f is also a-harmonic function
for any p. This yields (a), and completes the proofidfeorem 3.4

From Theorem 3.4ve easily obtain the following corollary which generalizes Corollary
8.16 (ii) in [31]. O

Corollary 3.8. Let f : (M™, g) — R be a p-harmonic submersion. Therf~1(1)}cr is
a minimal foliation of(M, g) by level hypersurfaces if and only(if p = 1, or (i) p # 1,
and f is horizontally homothetic

Corollary 39. If f: (M™, g) — R is al-harmonic submersion from an orientable Rie-
mannian manifolgthen{ f ~1(r)},cr is a foliation of (M, g) with each leaf a homologically
area-minimizing hypersurface
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Proof. Thisis adirect consequencetdfeorem 3.4nd Proposition 5.2 ifB3] where it was
proved that given a submersigh: (M™, g) — R from an orientable Riemannian manifold
with each level hypersurface minimal, then each hypersurface is actually homologically
area-minimizing. O

Corollary 3.10. Let F : R™ — R be a function of the forn¥(x1, ... ,x,) = xn —
f(x1, ..., xm—1), Wheref : R™~1 _ R withm < 8. Then F isl-harmonic if and only if
it is an affine function

Proof. F is clearly a submersion. If it is an affine function, then it is easy to see that
it is a horizontally homothetic harmonic function and hence a 1-harmonic submersion
by Theorem 3.4 Conversely, ifF is a 1-harmonic function, themheorem 3.4implies

that the level hypersurface—1(c) is a minimal hypersurface in"R Notice that the level
hypersurfaceF —1(c) is nothing but the graph of the functidn: R"~1 — R, h(x) =

f(x) + cin R™ for m < 8. Now Bernstein’s Theorem (see e[§§0]) implies thatf(x) is

an affine function, and hend€(x1, ... , x,) = x, — f(x1, ..., x,»—1) Must be an affine
function. O

In [18], the author uses the curvature argument to show that the plan@is a minimal
but not totally geodesic surface in Nil spa@?, gni), one of the eight three-dimensional
geometries; he then further proves that there is an isometry of Nil space carrying the plane
x = 0 to any other parallel plane = ¢, and hence concludes that theoordinate plane
foliation of Nil space is a minimal foliation which is not totally geodesic. Therefore the
Bernstein’s theorem does not hold in Nil space. The following Theorem shows that there
are abundant examples of 1-harmonic submersions and hence minimal foliations on Nil
space.

Theorem 3.11. Let(R3, gnil) denote Nil spacenvhere the metric with respect to the stan-
dard coordinatesx, y, z) in R3 can be written agnj = dx? + dy? 4 (dz — xdy)?. Then

(I) Alinearfunctionf(x, y, z) = Ax+By+Czisal-harmonic functionifandonlyid = 0
or C = 0. In other wordsthe foliation ofR3 by the parallel plane$Ax+ By+ Cz=
t}er is a minimal foliation with respect to Nil metrigy; if and only if the normal
direction of the plane is orthogonal (in Euclidean sense) either to the x-axis or the
z-axis. In particular all three coordinate plane foliations of Nil spac®2, gni) are
minimal foliations

(I) Forany constants A, B, and C with## 0,the family of quadratic polynomial functions
f(x, y, 2) = Ax+ By+ C(z — xy/2) are 1-harmonic submersionand hence the level
surfaceqAx+By+ C(z—xy/2) = t};cr give minimal foliations of Nil spao(é@, gNil)
by quadratic surfaces. In particulaNil space(R3, gnii) admits a minimal foliation
{z = xy/2 + t},er by parallel hyperbolic paraboloids

Proof. An easy computation gives the following components of Nil metric and the coeffi-
cients of its connection:
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gu1=1, g12=2g13=0, g22=1+x% 823 = —X, g33=1

Qo1 G230 221 B P14
rfy=rp=0, Iy =—x, M=%, rf=rfh=ri=I5=0,
MY =T5h="I3=TI3=0, rH=0, I = 3x, =361,
M3=0,  Ify=-3  I=-3x (8)

To prove statement (1), lef(x, y, z) = AX+ By+ Cz then(f1, f2, f3) = (A, B, C) and a
straightforward computation shows that

A2 =|Vf?= A%+ B®+ C?(1+ x?) + 2BCx
and
Af =gV fi — VI fi = =gy + g%y + ¢ + 263 fo
=—[-x+23)]f1=0.

This shows that the linear functighis always harmonic in Nil space. Now applyihgmma
3.7we see thaf is 1-harmonicif and only if itis horizontally homothetic, which, bgmma
3.5, is equivalent to

g(VEVIVFI?) = A(2xC? + 2BC) = 0.

From this equation we obtain Statement of (I).

For Statement (ll), we first note that fgicx, y, z) = Ax+ By+ C(z — xy/2), we have
(f1, f2, f3) = (A — Cy/2, B— Cx/2, C), and hencef is a submersion sinc€ # 0. A
direct computation gives

32 = |VfI? = (A= 3CY% + (B — 3C0° + C?(L+x°) + 2CX(B — 3C%)
and
Af =g fij — & rf fi =gt fu+ 8% faz+ 8% faz+ 2% fo3
— (g"' Ty + 85 + 8P I35+ 26°°T33) fr = —[—x + 2x()] f1 =0,

It follows that the quadratic functiofi(x, y, z) = AXx+ By + C(z — Xy/2) is a harmonic
function on Nil space. It is easily checked that

gVEVIVSD = ¢l 33 =0,

i.e., f is also horizontally homothetic, so, Iorollary 3.6it is also a 1-harmonic submer-
sion. Therefore we obtain Statement of (I1). In particular, wAes- B = 0, andC = 1
we see that the foliatiotF = {z = Xy/2 + t};cr by parallel hyperbolic paraboloids is a
minimal foliation. O

| am grateful to the referee for informing me the wof&s7,27]on the study of minimal
surfaces on the three-dimensional Heisenberg space which lead to the following remark.
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Remark 3.12.

(i) The three-dimensional Heisenberg space is the two-step nilpotent Lie group endowed
with a left-invariant metric which can be identified witi®3, ), where the metric,
with respect to the standard coordinale, Z in RR3, can be written ag = dX? +
dY2 +[dZ + (Y dX — X dY)/2]2. We can check that : (R3, g) — (RS, gnil) with
(X, Y, Z) = (X, Y, Z+ XY/2) is an isometry between the Heisenberg space and Nil
space. It follows fronj27] that there is no totally geodesic surface in the Heisenberg
space hence all the foliations givenTiheorem 3.1%Are non-totally geodesic minimal
foliations.

(i) Bekkar[7] studied the minimal graph equation in the three-dimensional Heisenberg
space and he showed that the hyperbolic parabdoid XY/2 is a minimal surface
in the Heisenberg space. Using the fact (see[6]ythat the translations along any
axes are isometries in the Heisenberg space one concludes that the family of “parallel”
paraboloids produce a minimal foliation of the Heisenberg space. Note that under
the isometryy given in (i) above this foliation corresponds to the minimal foliation
{z = xy+ |t € R} in Nil space. In fact, one can check that this and the one stated
in (1) of Theorem 3.1%re the only two minimal foliations in Nil space produced by
parallel hyperbolic paraboloids given by= cxy, wherec is a constant.

4. Minimal foliations and rigidity of metrics

One fundamental problem in the study of foliations is to find Riemannian metrics on a
manifold that turn a given foliation into a minimal foliation (see €1]). In this section,
we study the links between the existence of minimal foliations by hypersurfaces and rigidity
of metrics on Riemannian manifolds. Followifi] we call a foliation of am-dimensional
manifold with all leaves diffeomorphic 8”1 a plane foliation.

Lemma 4.1. Let (M™, g) be a Riemannian manifold arld c M be a local coordinate
neighborhood with coordinatds;}. LetC; denote the kth coordinate plane foliatifr, =
c} of (U, gy). Then

(i) Cyisatotally geodesic foliation if and only.ﬁ’ij" = O0foranyi, j € {1, 2, ... ,m}\{k},
(i) Cx is a Riemannian foliation if and only < = gk(x;), i.e., gXis a function ofx;

alone and
(iii) Cr is a minimal foliation if and only if
. 1 giKg; gk
ij k 4 _
gy + = =0. 9)
T gk
Proof. Let f : U — R, f(x1,...,x,) = xx denote thekth coordinate function which

is clearly a submersion. Note that the coordinate hypersurfgces ¢ are just the level
hypersurfaces of . It follows from [31, p. 168]thatC; is a totally geodesic foliation if
and only if Hesg(X,Y) = O for any vector fieldsX,Y e I'L, whereI'L denotes the
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subbundle tangent to the leaves, i.e., the hypersurfaces. Binge. . , x,,) = x; we have
that 'L = spand;};« and that

3.
Hess (8, 8)) = 89;f — (V) f = =T f = —If =0

for anyi, j # k, which gives Statement (i). To prove Statement (ii), we note that Theorem
8.9 in[31] implies that the level hypersurfaces of a submersfon(M, g) — R form a
Riemannian foliation oriM, g) if and only if X (|V £]2) = 0 for any vector field\ € I'L.
Form this and the fact that the coordinate functipn U — R, f(x1,...,x,) = x;isa
submersion withV £|? = g and I'L. = spar{d;};.x we obtain Statement (ii). Finally, by
Theorem 3.4ve see that the foliation of the coordinate hypersurfages ¢ is minimal if

and only if thekth coordinate functiorf(xy, ... , x,;) = x¢ is 1-harmonic. Again, an easy
computation turns the 1-harmonic equatidfi—d f(grad In |V f])) = O for the coordinate
function f(x1, ... , x,) = x; into Eq. (9)which gives Statement (iii). O

It is well known that oriR® all the coordinate plane foliations are totally geodesic and
hence minimal foliations with respect to the standard Euclidean métheorem 3.11
shows that Nil metric also has the property that all coordinate plane foliations are minimal.
The following proposition and the corollary show that Sol space, another one of the eight
three-dimensional geometries, has the same property.

Proposition 4.2. Let(R3, gso) denote Sol spagevhere the metric can be written ggo) =

€% dx2 4+ e~ % dy? + dz2 with respect to the standard coordinates y, z) in R3. Then a
linear function f(x, y, z) = Ax+ By + Cz on(R3, gs,) is always a harmonic functigiit

is horizontally homothetic and hence a p-harmonic function foramry[1, co) if and only
if either C = 0 or A = B = 0. In particular, a plane foliationfAx+ By+ Cz=t};cr isa
minimal foliation on(R3, gse)) if and only if eitherC = 0or A = B = 0.

Proof. A direct computation gives the following components of Sol metric and the coeffi-
cients of the connection:

gn=€%  gp=€%  gp=1  alothergi=0  gl=e%,
g2 =%, gB=1, allother g = 0; I =Th="T5s="5=0;
2 2 2 2 _ 0 3 3 _ 2 3
Iy =Ip=>rp=Ii3=0 i =&, =", F33=0.
(10)

Now for linear functionf(x, y, z) = AX+ By + Cz we have( f1, f2, f3) = (A, B, C):
A2 =|Vf]? = A%e % + B?eX + C?
and
Af =g fij — &I fi = (MR + §PT5y) f3 = —[e" % (—€¥) + ¥ e Z]C = 0.

This shows that any linear function oR3, gsol) is @ harmonic function. Bgemma 3.5 f
is horizontally homothetic if and only if

s(VEVIVSI?) = ¢ £:02); = C(-242e% 4+ 2B? %) = 0.
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This, together witiTheorem 3.4completes the proof of the proposition. O
FromProposition 4. 2andLemma 4.1we obtain the following corollary.

Corollary 4.3. Let (R3, gso) be Sol space witsg = €% dx? + e % dy? + dz? with
respectto the standard coordinai@s y, z) in R3. Then the x- and y-coordinate functions are
horizontally homothetic harmonic functiofwghich are not Riemannian submersipnhose

fibers determine totally geodesic foliations of Sol spadlst the z-coordinate function is

a harmonic Riemannian submersion whose fibers yield a minimal and Riemannian foliation
which is not totally geodesic

Example 4.4. Let (H™, xn‘lz h dxl-z) denote the hyperbolic space of upper-half-space
model withH” = R"~1 x R*. Then

(1) Allthe firstm — 1-coordinate functiong(x1, ... , x,;) = xx(k % m) are horizontally
homothetic harmonic so they are 1-harmonic submersions. Therefore, all the first
m — 1-coordinate plane foliations are minimal foliations. In fact, they are all totally
geodesic foliations.

(I The x,,-coordinate plane foliation is a Riemannian foliation which is not minimal.

All the above conclusions are direct consequencethaforem 3.4Lemma 4.1and the
following components of metric and the coefficients of connection:

Si ; ) ) 1 ]
gi= . S=x2sp I =-Tp=-Thy=— (#m),
X5 Xm
n 1 l other ¥
= —— allother I37 = 0.
m
For example, for the,,-coordinate functiory(xy, ... , x,) = x,,, we have
. 1 gima,gmm
g”Fijm + EW = (m — Dx, #0.

Therefore, it follows fromLemma 4.1hat thex,,-coordinate plane foliation is not minimal.
However, byLemma 4.1it is a Riemannian foliation singg"™ = x2 .

Example 4.4hows that the hyperbolic metv&;;2 Yo dxl.2 onthe connected open subset
H™ of R™ admitsm — 1 minimal coordinate plane foliations. Our next theorem shows that,
up to a homothety, the hyperbolic metric is the unique complete conformally flat non-flat
metric on a connected open subseRdf that has this property.

Theorem 4.5. LetU C R™ be an open and connected subs$et} be the standard orthog-
onal coordinates ofiR™. Then

() A conformally flat metrigy = F~2 Yo dxi2 on U admits m minimal coordinate
plane foliations if and only iff(x) is a constantor equivalently g is a flat metric
on U.
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() For m > 3, a complete conformally flat non-flat metgg = F~23"", dx? on U
admitsm — 1 minimal coordinate plane foliations if and only(t/, gy) = (H™, x;z
> 1 dx?) up to a homothety

() For m > 3, a complete conformally flat non-flat metrgey = F~23"""; dx? on U
admits one Riemannian coordinate plane foliation if and oniyifgy) = (H™, x;,2
> 1 dx?) up to a homothety

Proof. For Statement (1), we first notice that the sufficiency is clearly true because each of
them-coordinate plane foliations @f is actually totally geodesic and hence minimal with
respect to the standard Euclidean metric. Conversely, If each ofitbeordinate plane
foliations is minimal, then byemma 4.1we haveEq. (9)for k = 1,2,... ,m. Using
coordinate{x;} we can write the components gf and the coefficients of connection as

gij = F25, g = F25.
Li=—fi=-lj,  Ij=1Tli=—fi#));
allotherr;, =0, wheref =In F. (12)

Substitutingeq. (11)into Eq. (9)we have(m — 1)FF; = 0foranyk = 1,2, ..., m. Since
m > 2 we havef, = 0foranyk =1, 2, ..., m. Therefore we conclude thatis constant,
which gives Statement (l).

To prove Statement (II), we assume, without loss of generality, that the(first
1)-coordinate plane foliation§;(x; = constantfoi = 1,2,...,m — 1) are minimal.
Then, as in the above proof of Statementf),= O foranyk = 1, 2, ... , m — 1. It follows
thatF = F(x,,), i.e., itdepends only am,,. This, together witt{11), shows thaﬂf = Ofor
anyi, j # k (k # m). Therefore by (i) oLemma 4.1we conclude that the coordinate plane

foliationsCy (k = 1,2, ... ,m — 1) are actually totally geodesic. Singgare orthogonal
coordinates and the conformally flat metgig preserves orthogonality, we conclude that
Cr(k=1,2,...,m—1)are mutually orthogonal families of totally geodesic hypersurfaces

in (U, gy). It was proved irf19] that anm-dimensional Riemannian manifold has negative
constant sectional curvature if and only if it admiis— 1 orthogonal families of totally
geodesic hypersurfaces. Therefore, we seegifiat F2(x,,) Y dxi2 has negative con-
stant sectional curvature which we denotekhyOn the other hand, itis well known (see e.qg.
[29, p. 338) that a conformally flat metrig 2 Y dxl.2 has constant sectional curvature
K if and only if

fik+ fifi =0, J# Kk, (12)

K
RAB-2 =5 (13)
ki, j
wheref = In F. UsingEqg. (13)and the factthaf(xy, ... , x;;) = F(x,,) and thatn > 3,

we haver,, = ++/—K. Solving these equations we gétx,,) = ++/—Kx,, — b for some
constanb. Now, by connectedness bfand completeness gf;, we have thatU, gy) must
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be either one of the upper half spaces:

b m
R™1 x (—, oo) , (W—Kx;, — b)_2 dxl-z) ,
[z () et

b m
R x (——, oo) , (W=Kxpy 4 b)~2 dx§> ;
(- 2

or, one of the lower half spaces

(Rm_l X (—oo, \/%_K) ,(V=Kxp —b)~? ;dﬁ) ,

-b m
R™ 1 x <—oo, —>  (V=Kxn+b)7?) dx?) )
< V—K i=1

Itis easy to check that each of the above spaces is homothetic to the standard upper half-space
model of the hyperbolic spagé’™, x,;z Y dxl-z). Thereby establishing Statement (11).

For Statement (lll), we have seen lxample 4.4that the standard hyperbolic space
(H™, x;,2 3" ; dx?) admits one Riemannian coordinate plane foliation, i.e. yitte co-
ordinate plane foliation. Conversely, we assume, without loss of generality, thaitithe
coordinate plane foliation is a Riemannian foliation. Then by (iij.efnma 4.1we have
thatg™™ = F2 depends only om,,. This, together witi{11), implies thatFiJ?‘ = 0 for any
i, j # k(k # m). Therefore by (i) oLemma 4.1we conclude that the first — 1-coordinate
plane foliationg, (k = 1, 2, ... , m — 1) are totally geodesic, and hence minimal foliations.
Applying Statement (Il) we obtain Statement (lII). O
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