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Abstract

We classifyp-harmonic morphisms of twisted product type from complete simply connected
manifolds and polynomialp-harmonic morphisms and holomorphicp-harmonic morphisms be-
tween Euclidean spaces. We also characterize thosep-harmonic functionsf : (M, g)→ R whose
level hypersurfaces produce minimal foliations of(M, g) generalizing Baird–Eells’ results on har-
monic morphisms. Among applications, we show that Nil space(R3, gNil ) and Sol space(R3, gSol)

admit many 1-harmonic submersions and hence many foliations by minimal surfaces. We also prove
that if a complete conformally flat non-flat metricgU = F−2∑m

i=1 dx2
i on a connected open subset

U of Rm admits one Riemannian orm− 1 minimal coordinate plane foliations, then(U, gU)must
be hyperbolic space(Hm, x−2

m

∑m
i=1 dx2

i ) up to a homothety.
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1. Preliminaries

In this paper, all our objects, manifolds, vector fields, and maps are assumed to be smooth
unless otherwise stated.

Forp ∈ (1,∞), ap-harmonic mapis a mapϕ : (M, g) → (N, h) between Riemannian
manifolds which is a critical point of thep-energy functional:

Ep(ϕ) = 1

p

∫
M

|dϕ|pdx.
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Using the first variational formula we see that a mapϕ is p-harmonic if and only if its
p-tension fieldτp(ϕ) ≡ 0, where

τp(ϕ) = |dϕ|p−2τ2(ϕ)+ (p− 2)|dϕ|p−3 dϕ(grad|dϕ|)
with τ2(ϕ) denoting the tension field ofϕ. When|dϕ| 	= 0, we can write

τp(ϕ) = |dϕ|p−2{τ2(ϕ)+ (p− 2)dϕ(grad( ln |dϕ|))}. (1)

A C2 mapϕ : (M, g) → (N, h) is ap-harmonic morphismif it preserves the solutions
of p-Laplace equation in the sense that for anyp-harmonic functionf : U → R, defined
on an open subsetU of N with ϕ−1(U) non-empty,f ◦ ϕ : ϕ−1(U) → R is ap-harmonic
function.

As a generalization of Riemannian submersions, ahorizontally weakly conformalmap
is a mapϕ : (M, g) → (N, h) with the property that for eachx ∈ M at which dϕx 	= 0,
the restriction dϕx|Hx : Hx → Tϕ(x)N is conformal and surjective, whereHx denotes the
orthogonal complement ofVx = ker dϕx in TxM. We callHx the horizontal andVx the ver-
tical space ofϕ atx. Thus we haveTxM = Vx⊕Hx andϕ is horizontally weakly conformal
implies that there is a numberλ(x) ∈ (0,∞) such thath(dϕ(X),dϕ(Y)) = λ2(x)g(X, Y)

for anyX, Y ∈ Hx. This, in local coordinates, is equivalent togij (∂ϕα/∂xi)(∂ϕ
β/∂xj) =

λ2hαβ ◦ ϕ. Note that at the pointx ∈ M where dϕx = 0 we can letλ(x) = 0 and obtain a
continuous functionλ : M → R which is called thedilation of a horizontally weakly con-
formal mapϕ. A non-constant horizontally weakly conformal mapϕ is calledhorizontally
homotheticif the gradient ofλ2(x) is vertical meaning thatX(λ2) ≡ 0 for any horizontal
vector fieldX onM.

It is well known (see[9,13,20,22]) that a non-constant map is ap-harmonic morphism
if and only if it is a horizontally weakly conformalp-harmonic map. Harmonic maps
and harmonic morphisms are, respectively, the well-known names for 2-harmonic maps
and 2-harmonic morphisms which have been studied extensively. For a detailed account
and references on harmonic morphisms we recommend the recent monograph[5] and the
regularly updated bibliography[15].

2. Some classifications of p-harmonic morphisms

In recent years, much work has been done (see[5,15]) in constructing and classifying
harmonic morphisms between certain model spaces. For example, it is proved in[21] that
if ϕ : R

m → (Nn, h) (n ≥ 3) is a non-constant harmonic morphism with totally geodesic
fibers, then(N, h) is isometric toRn andϕ is an orthogonal projectionRm → R

n followed
by a homothety. In[14] it is showed thatϕ : U → R

n (n ≥ 3) is a horizontally homothetic
harmonic morphism with totally geodesic fibers from a connected open subset ofR

m, then
ϕ is the restriction of an orthogonal projectionR

m → R
n followed by a homothety. It is

also proved in[16] that any non-constant holomorphic harmonic morphismϕ : U → C
n

(n ≥ 2) from an open and connected subsetU of C
m is the restriction of an orthogonal

projection followed by a homothety. Horizontally homothetic submersions generalize the
notion of Riemannian submersions.
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A horizontally homothetic submersion with totally geodesic fibers and integrable hori-
zontal distribution can be characterized as locally the projection of a warped product onto
its second factor (see[5]). More generally, a horizontal conformal submersion with totally
geodesic fibers and integrable horizontal distribution is characterized in[24] as locally the
projection of a twisted product onto its second factor. A horizontally homothetic submer-
sion with totally geodesic fibers and integrable distribution is a harmonic morphism called
a harmonic morphism of warped product type[5]. Recently, Svensson[28] proves that a
harmonic morphism of warped product type from a complete, simply connected manifold
is globally the projection of a warped product onto its second factor (the universal covering
space of the target manifold) followed by the covering map. In this section, we first classify
all p-harmonic morphisms of twisted product type from complete and simply connected
manifolds generalizing Svensson’s classification[28] on harmonic morphisms of warped
product type. We then give a classification of polynomialp-harmonic morphisms and holo-
morphicp-harmonic morphisms between Euclidean spaces generalizing Gudmundsson and
Sigurdsson’s classification of harmonic morphisms by classifying horizontally homothetic
maps between such spaces.

Theorem 2.1. Letm > n ≥ 1,1 ≤ p < ∞, andϕ : (Mm, g) → (Nn, h) be a submersive
p-harmonic morphism with totally geodesic fibers, integrable horizontal distribution, and
dilation λ. Whenp = n, ϕ is assumed to be onto. Suppose that(M, g) is complete and
simply connected. Then, (M, g) is isometric to the twisted productF ×λ−2 Ñ of a fiberF of
ϕ and the universal covering spacẽN ofN, andϕ is the projection ontõN followed by the
universal covering map. Furthermore, if p 	= n, thenϕ is a harmonic morphism of warped
product type and it is the projection of a warped product followed by the universal covering
map.

Proof. First, we note byTheorems 3.1 and 3.4thatϕ is ann-harmonic morphism being
horizontally conformal submersion with totally geodesic fibers. It follows that ifp 	= n,
then it is a horizontally homothetic harmonic morphism beingp-harmonic morphism for
two differentp values. Using Lemma 4.8 in[28] we conclude thatϕ is an onto submersion
in any case. LetFV denote the foliation ofM by the fibers ofϕ. It is a totally geodesic
foliation by assumption. On the other hand, since the horizontal distribution ofϕ is integrable
we have another foliationFH of M whose leaves are the maximal integral manifolds of
horizontal distribution. By Lemma 3.2 in[14], FH is totally umbilical. SinceFV andFH
are orthogonal to each other, Theorem 1 in[26] implies that(M, g) is isometric to a twisted
productF ×η2 Ñ with FV andFH corresponding to the canonical foliations of the product

F × Ñ, whereF = ϕ−1(y) is a fiber andÑ is an integral manifold orthogonal toF . It
follows thatϕ factors through the projectionπ2 : F ×η2 Ñ → Ñ and a mapπ : Ñ → N.

SinceM is assumed to be simply connectedÑ is also simply connected. Using the fact
thatπ = ϕ|Ñ is conformal andLemma 3.3in do Carmo[11] we can show that the map
π : Ñ → N is a covering map and hencẽN is the universal covering space ofN. SinceÑ
is the universal covering ofN andϕ = π ◦ π2, a simple computation shows thatη = λ−1.
Therefore, we obtain the first part of the theorem. Now ifp 	= n, thenϕ is a horizontally
homothetic harmonic morphism. By the last assertion of Lemma 3.2 in[14],FH is spherical,
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i.e., each leaves is an extrinsic sphere. So by Corollary 1 in[26], (M, g) is isometric to
a warped product andϕ becomes the projection of a warped product onto the universal
covering space ofN followed by the covering map. Thus, we complete the proof of the
theorem. �

From the proof ofTheorem 2.1we actually have the following corollary.

Corollary 2.2. Letm > n ≥ 1, andϕ : (Mm, g) → (Nn, h) be a surjective horizontally
conformal submersion with totally geodesic fibers, integrable horizontal distribution, and
dilation λ from a complete and simply connected manifold. Then, (M, g) is isometric to the
twisted productF ×λ−2 Ñ of a fiber F ofϕ and the universal covering spaceÑ of N, andϕ
is the projection ontõN followed by the universal covering map.

Taking into account of the curvature we obtain the following corollary.

Corollary 2.3. Let ϕ : (Mm, g) → (Nn, h) (m > n ≥ 2) be a harmonic morphism
of warped product type from a complete and simply connected manifold(Mm, g) with
sectional curvatureKM ≥ 0, then(M, g) is isometric to the Riemannian productF × Ñ
of a fiber F ofϕ and the universal covering spacẽN of N, andϕ is the projection ontõN
followed by the universal covering map which is a homothety.

Proof. By Theorem 2.1, we know that(M, g) is isometric to the warped productF ×λ−2 Ñ

of a fiberF of ϕ and the universal covering spaceÑ of N, andϕ is the projection onto
Ñ followed by the universal covering map. It follows from[32] that a complete warped
product with non-negative sectional curvature must be a Riemannian product. From this we
obtain the corollary. �

Notice that inTheorem 2.1andCorollary 2.2, besides requiring(M, g) to be complete
and simply connected, the usual conditions for the de Rham type of decomposition theorem,
we also assume the mapϕ to have integrable horizontal distribution, totally geodesic fibers,
and to be onto whenp = n. These conditions seem a bit strong yet none of them can be
dropped as shown by the following examples.

Example 2.4. Let ϕ : S3 → S2 be the well-known Hopf fibration. It is an onto harmonic
morphism from complete simply connected manifold with totally geodesic fibers which are
great circles. We know (see e.g.[5]) that the horizontal distribution is nowhere integrable.
The Theorem does not hold in this case since, topologically,S3 cannot be diffeomorphic to
S1 × S2, the Cartesian product of a fiber and the universal covering ofS2.

Example 2.5. Letϕ : R
2 → R with ϕ(x, y) = ex cosy. It is easily checked thatϕ is an onto

harmonic submersion (hence a submersive harmonic morphism) from a complete simply
connected space. Since the horizontal distribution is one-dimensional it is integrable. It is
also easy to see that the fibers are not totally geodesic in general. The Theorem does not
hold in this case, too. To see this, notice that the fiberF = ϕ−1(0) is not connected, so,
topologically,F × R cannot be diffeomorphic toR2.
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Example 2.6. Let ϕ : R
2 × R

3 → S3 be the composition of the orthogonal projection
π : R

2 ×R
3 → R

3 followed by the inverse of the stereographic projectionσ : R
3 → S3. It

follows from [24] thatϕ is a 3-harmonic morphism with integrable horizontal distribution
and totally geodesic fibers from a complete simply connected manifold. Note thatϕ is not
onto and the theorem does not hold in this case for the similar topological argument.

We also remark that the curvature condition inCorollary 2.3is essential, for example,
consider the hyperbolic spaceHm of sectional curvature−1 in the upper half-space model.
We know (see[5]) that the projection ofHm onto its boundaryRm−1 is a harmonic morphism
of warped product type from a complete and simply connected space whilstHm is not
isometric to the Riemannian product of a fiber andRm−1.

Now we prove the following theorem which gives a classification of horizontally homo-
thetic maps between Euclidean spaces.

Theorem 2.7. Letϕ : R
m → R

n (m > n ≥ 2) be a horizontally homothetic map. Thenϕ
is an orthogonal projectionRm → R

n followed by a homothety.

Proof. By [14] we know that for a horizontally homothetic mapϕ : (Mm, g) → (Nn, h)

(m > n ≥ 2) with dilationλ we have

KM(X, Y) = λ2KN(X̃, Ỹ)− 3

4
|[X, Y ]ν|2 − λ4

4

∣∣∣∣gradν

(
1

λ2

)∣∣∣∣
2

,

whereX andY are orthonormal horizontal vector fields onM, X̃ andỸ are corresponding
ϕ-related vector fields onN, and gradν(1/λ

2) denotes the vertical part of the gradient of
1/λ2. Since the sectional curvatureKM = KN = 0 we see from the above equation that
[X, Y ]ν = 0 and gradν(1/λ

2) = 0 i.e., the horizontal distribution is integrable andλ is
constant. Therefore,ϕ is, up to a homothety, a Riemannian submersion with integrable
horizontal distribution. Therefore, the foliation ofR

m determined by the fibers ofϕ is a
Riemannian foliation. Applying Theorem 1.3 in[32] we conclude that the principal curva-
tures of the leaves (i.e., the fibers ofϕ) are zero and hence the latter are totally geodesic.
Now the statement thatϕ is an orthogonal projection followed by a homothety follows from
Corollary 2.3. �

Now we are ready to give a classification of polynomialp-harmonic morphisms and
holomorphicp-harmonic morphisms between Euclidean spaces.

Theorem 2.8.

(1) Letm > n ≥ 2, p ∈ (1,∞). If ϕ : R
m → R

n is a polynomial p-harmonic morphism,
then eitherp = 2, andϕ is a harmonic morphism; or p 	= 2, andϕ is an orthogonal
projection followed by a homothety.

(2) For n > 1, ϕ : C
m → C

n is a non-constant holomorphic p-harmonic morphism for
p ∈ (1,∞) if and only ifϕ is an orthogonal projection followed by a homothety.



370 Y.-L. Ou / Journal of Geometry and Physics 52 (2004) 365–381

Proof. For (1), notice that ifϕ is ap-harmonic morphism then it follows from[22] that it is
a horizontally weakly conformalp-harmonic map. On the other hand, sinceϕ is polynomial
map, and it is proved in[1] that any horizontally weakly conformal polynomial mapϕ :
R
m → R

n (m > n ≥ 2) has to be harmonic and hence a harmonic morphism. Therefore if
p 	= 2, thenϕ is both a p-harmonic and a 2-harmonic morphism, which, by[22], is possible
if and only if ϕ is a horizontally homothetic map. Now usingTheorem 2.7we obtain the
statement. For Statement (2), ifp = 2 the proof was given in[16]. If ϕ : C

m → C
n is a

p-harmonic morphism forp 	= 2, then it is a horizontally weakly conformalp-harmonic
map. Noting that a holomorphic mapϕ : C

m → C
n is automatically harmonic we conclude

thatϕ is also a harmonic morphism because it is a horizontally weakly conformal harmonic
map. A similar argument shows thatϕ is horizontally homothetic and it is an orthogonal
projection followed by a homothety byTheorem 2.7. �

Remark 2.9. Note that locally, ap-harmonic morphismϕ : (Mm, g) → (Nn, h) is a
solution to the following over-determined system of partial differential equations:

div(|dϕ|p−2 dϕ) = 0, gij ∂ϕ
α

∂xi

∂ϕβ

∂xj
= λ2(x)hαβ�ϕ.

Forp = 2, we know (cf.[2,23,25]) that many polynomial mapsϕ : R
m → R

n including the
maps given by multiplications of real, complex, quaternionic, and Cayley numbers solve
the above equations.Theorem 2.8says that forp 	= 2, the only polynomial solution is the
special linear map. However, it is proved in[24] that there are many polynomialp-harmonic
morphisms when the domain is given a suitable conformally flat metric.

3. p-Harmonic functions and minimal foliations

The most interesting link amongp-harmonic morphisms, minimal foliations, and hori-
zontally homothetic maps between Riemannian manifolds is the following theorem whose
proof underwent several steps. Baird and Eells[3] obtained the theorem for the casep = 2.
Forp 	= 2, Statement (I) was announced in[4], and Statement (II) is basically a rearrange-
ment of the results in[9] (see also[30]).

Theorem 3.1. Letm > n ≥ 2 andϕ : (Mm, g) → (Nn, h) be a horizontally conformal
submersion. If

(I) p = n, thenϕ is p-harmonic map if and only if{ϕ−1(y)}y∈N is a minimal foliation of
(M, g) of codimension n.

(II) If p 	= n, then any two of the following conditions imply the other one:
(a) ϕ is a p-harmonic map,
(b) {ϕ−1(y)}y∈N is a minimal foliation of(M, g) of codimension n,
(c) ϕ is horizontally homothetic.

As noted in[9], for p < 1, thep-energyEp is not a norm andW1,p is not a Banach
space; besides, forp = 1, althoughW1,1 becomes a Banach space, it is impossible to derive
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a Euler–Lagrange equation corresponding to critical points of 1-energy. So in general, it is
assumed thatp > 1 whenp-harmonic maps are studied. However, in the casef : (M, g)→
R we do have the 1-energy functional:

E1(f) =
∫
M

|∇f | dx (2)

as in[10], where the authors defined the functional for a certain class of functions defined
on a domain in a Euclidean space. In fact, Bombieri et al. in[10] called the functions
which are critical points of the functional the functions of least gradient and they show
that the level hypersurfaces of such a function are minimal. This leads to a construction of
minimal graphs which are not hyperplanes inR

m form ≥ 9 and thereby solves the famous
Bernstein’s problem. In conformity with the language ofp-energy andp-harmonic maps
we adopt the following definition.

Definition 3.2. A submersionf : (M, g)→ R is said be 1-harmonicif it is a critical point
of the 1-energy functional(2) defined on all functions onM which are submersions.

Lemma 3.3. A submersionf : (M, g)→ R is 1-harmonic if and only if the1-tension field
τ1(f) ≡ 0, where

τ1(f) = +f − g(∇f,∇ ln |∇f |)
|∇f | , (3)

with+f denoting the Laplacian of f with the convention that onR
m,+f = ∑m

i=1 ∂
2f/∂x2

i .

Proof. It is well known (see e.g.[8]) that the Euler–Lagrange equation of the functional
(2) is div(∇f/|∇f |) = 0. It is easily checked that

div

( ∇f
|∇f |

)
= {+f − g(∇f,∇ ln |∇f |)}

|∇f | = τ1(f). (4)

Thus we obtain the Lemma. �

Now we give the following theorem which generalizesTheorem 3.1.

Theorem 3.4. Letf : (Mm, g)→ R be a submersion. Then

(I) f is a1-harmonic function if and only if{f−1(t)}t∈R is a foliation of(M, g) by minimal
hypersurfaces.

(II) for p ∈ (1,∞), any two of the following conditions imply the other one:
(a) f is a p-harmonic function,
(b) {f−1(t)}t∈R is a foliation of(M, g) by minimal hypersurfaces,
(c) f is horizontally homothetic.

To proveTheorem 3.4we need the following two lemmas.
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Lemma 3.5. Let f : (Mm, g) → R be a submersion andη = ∇f/|∇f | denote the
unit normal vector field of the level hypersurfaces of f. Then the following statements are
equivalent:

(i) f is horizontally homothetic,
(ii) df(grad( ln |∇f |)) = g(∇f,∇ ln |∇f |) = 0,

(iii) Hessf (η, η) = 0,

whereHessf (X, Y) denotes the Hessian off .

Proof. Since the target manifold is of dimension one andf is a submersion we see thatf
is a horizontally conformal submersion with dilationλ given byλ2 = |df |2 = |∇f |2 =
g(∇f,∇f). Using local coordinates{xi} onM we have

df(grad( ln |∇f |))=(fk dxk)(gij∂i( ln |∇f |)∂j)={gik∂i(|∇f |)fk}
|∇f | = g(∇f,∇|∇f |)

|∇f | ,

where∂i = ∂/∂xi, fk = ∂f/∂xk, and Einstein convention of summation is used. On the other
hand, it follows from[31, p. 106]that

Hessf (η, η) = g(∇f,∇λ)
λ

= g(∇f,∇|∇f |)
|∇f | .

From the above two equations we have

df(grad( ln |∇f |)) = Hessf (η, η) = g(∇f,∇ ln |∇f |). (5)

Note that, in general, a horizontally weakly conformal mapϕ : (Mm, g) → (Nn, h) with
dilationλ given byλ2 = gij (∂ϕα/∂xi)(∂ϕ

β/∂xj)hαβ = |dϕ|2/n is horizontally homothetic
if X(λ2) = 0 for any horizontal vector fieldX onM. One can easily check that this is
equivalent to dϕ(grad( ln |dϕ|)) = 0. This, together withEq. (5), proves the lemma. �

Corollary 3.6.

(I) For p ∈ [1,∞) and a submersionf : (Mm, g) → R, the p-tension field of f is given
by

τp(f) = |∇f |p−2{+f + (p− 2)df(grad( ln |∇f |))}. (6)

(II) For p, q ∈ [1,∞), a p-harmonic submersionf : (Mm, g)→ R is also a q-harmonic
submersion forp 	= q if and only if f is horizontally homothetic in which case it is
p1-harmonic for anyp1 ≥ 1.

Proof. By (ii) of Lemma 3.5, df(grad( ln |∇f |)) = g(∇f,∇ ln |∇f |). Combining(1)
and (3)we obtain the unified form of the formula(6) for thep-tension field of a submersion
including thep = 1 case, which gives Statement (I). To prove Statement (II), we know
from (6) that ap-harmonic submersionf is also aq-harmonic submersion if and only if

+f + (p− 2)df(grad( ln |∇f |)) = 0, +f + (q− 2)df(grad( ln |∇f |)) = 0.
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It follows that df(grad( ln |∇f |)) = 0 sincep 	= q. By Lemma 3.5, f is horizontally
homothetic. Conversely, iff is a horizontally homotheticp-harmonic submersion, then,
by (6), +f = 0, i.e.,f is also a harmonic submersion. Using(6) again we see thatf is a
p1-harmonic submersion for anyp1 ∈ [1,∞) hence in particular it is also aq-harmonic
submersion. �

Lemma 3.7. Letf : (Mm, g)→ R be a submersion andη = ∇f/|∇f | be the unit normal
vector field of the level hypersurfaces of f. LetH(η) denote the mean curvature of the level
hapersurfaces. Then we have

(m− 1)H(η) = −τ1(f) = −{+f − df(grad( ln |∇f |))}
|∇f | . (7)

Proof. By our convention on Laplace operator+, Eq. (8.7) in[31] reads

(m− 1)H(η) = −+f + Hessf (η, η)

|∇f | .

UsingEqs. (3) and (5)we obtain the lemma. �

Now we proceed to proveTheorem 3.4.

Proof of Theorem 3.4. Statement (I) follows immediately fromEq. (7). To prove Statement
(II), we first note that the statement is true forp = 2 by Eq. (7). Forp ∈ (1,∞) \ 2, we
proceed as follows:

• (a) + (b) ⇒ (c): Suppose thatf is ap-harmonic function withp ∈ (1,∞) \ 2 and
that{f−1(t)}t∈R is a foliation of(M, g) by minimal hypersurfaces. Then, it follows from
Statement (I) thatf is a 1-harmonic submersion. Sincep 	= 1 by assumption, we apply
(II) of Corollary 3.6to conclude thatf is horizontally homothetic.

• (a) + (c) ⇒ (b): Suppose thatf is p-harmonic forp 	= 1 and thatf is horizontally
homothetic. It follows from (II) ofCorollary 3.6thatf is also a 1-harmonic submersion.
Applying Statement (I) we obtain (b).

• (b)+ (c)⇒ (a): It follows from (b) and Statement (I) thatf is a 1-harmonic submersion;
this, together with (c) and (II) ofCorollary 3.6, shows that f is also ap-harmonic function
for anyp. This yields (a), and completes the proof ofTheorem 3.4.

From Theorem 3.4we easily obtain the following corollary which generalizes Corollary
8.16 (ii) in [31]. �

Corollary 3.8. Let f : (Mm, g) → R be a p-harmonic submersion. Then, {f−1(t)}t∈R is
a minimal foliation of(M, g) by level hypersurfaces if and only if(i) p = 1, or (ii) p 	= 1,
and f is horizontally homothetic.

Corollary 3.9. If f : (Mm, g) → R is a 1-harmonic submersion from an orientable Rie-
mannian manifold, then{f−1(t)}t∈R is a foliation of(M, g) with each leaf a homologically
area-minimizing hypersurface.
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Proof. This is a direct consequence ofTheorem 3.4and Proposition 5.2 in[33] where it was
proved that given a submersionf : (Mm, g)→ R from an orientable Riemannian manifold
with each level hypersurface minimal, then each hypersurface is actually homologically
area-minimizing. �

Corollary 3.10. Let F : R
m → R be a function of the formF(x1, . . . , xm) = xm −

f(x1, . . . , xm−1), wheref : R
m−1 → R withm ≤ 8. Then F is1-harmonic if and only if

it is an affine function.

Proof. F is clearly a submersion. If it is an affine function, then it is easy to see that
it is a horizontally homothetic harmonic function and hence a 1-harmonic submersion
by Theorem 3.4. Conversely, ifF is a 1-harmonic function, thenTheorem 3.4implies
that the level hypersurfaceF−1(c) is a minimal hypersurface in Rm. Notice that the level
hypersurfaceF−1(c) is nothing but the graph of the functionh : R

m−1 → R, h(x) =
f(x) + c in R

m for m ≤ 8. Now Bernstein’s Theorem (see e.g.[10]) implies thatf(x) is
an affine function, and henceF(x1, . . . , xm) = xm − f(x1, . . . , xm−1) must be an affine
function. �

In [18], the author uses the curvature argument to show that the planex = 0 is a minimal
but not totally geodesic surface in Nil space(R3, gNil ), one of the eight three-dimensional
geometries; he then further proves that there is an isometry of Nil space carrying the plane
x = 0 to any other parallel planex = c, and hence concludes that thex-coordinate plane
foliation of Nil space is a minimal foliation which is not totally geodesic. Therefore the
Bernstein’s theorem does not hold in Nil space. The following Theorem shows that there
are abundant examples of 1-harmonic submersions and hence minimal foliations on Nil
space.

Theorem 3.11. Let (R3, gNil ) denote Nil space, where the metric with respect to the stan-
dard coordinates(x, y, z) in R

3 can be written asgNil = dx2 + dy2 + (dz− x dy)2. Then

(I) A linear functionf(x, y, z) = Ax+By+Cz is a1-harmonic function if and only ifA = 0
or C = 0. In other words, the foliation ofR3 by the parallel planes{Ax+ By+ Cz=
t}t∈R is a minimal foliation with respect to Nil metricgNil if and only if the normal
direction of the plane is orthogonal (in Euclidean sense) either to the x-axis or the
z-axis. In particular, all three coordinate plane foliations of Nil space(R3, gNil ) are
minimal foliations.

(II) For any constants A, B, and C withC 	= 0,the family of quadratic polynomial functions
f(x, y, z) = Ax+ By+C(z− xy/2) are1-harmonic submersions, and hence the level
surfaces{Ax+By+C(z−xy/2) = t}t∈R give minimal foliations of Nil space(R3, gNil )
by quadratic surfaces. In particular, Nil space(R3, gNil ) admits a minimal foliation
{z = xy/2 + t}t∈R by parallel hyperbolic paraboloids.

Proof. An easy computation gives the following components of Nil metric and the coeffi-
cients of its connection:
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g11 = 1, g12 = g13 = 0, g22 = 1 + x2, g23 = −x, g33 = 1;
g11 = 1, g12 = g13 = 0, g22 = 1, g23 = x, g33 = 1 + x2;
Γ 1

11 = Γ 1
33 = 0, Γ 1

22 = −x, Γ 1
23 = 1

2, Γ 2
11 = Γ 2

22 = Γ 2
33 = Γ 2

23 = 0,

Γ 3
11 = Γ 3

22 = Γ 3
23 = Γ 3

33 = 0, Γ 1
12 = 0, Γ 2

12 = 1
2x, Γ 3

12 = 1
2(x

2 − 1),

Γ 1
13 = 0, Γ 2

13 = −1
2, Γ 3

13 = −1
2x. (8)

To prove statement (I), letf(x, y, z) = Ax+ By+ Cz, then(f1, f2, f3) = (A,B,C) and a
straightforward computation shows that

λ2 = |∇f |2 = A2 + B2 + C2(1 + x2)+ 2BCx

and

+f = gijfij − gijΓ kij fk = −(g11Γ 1
11 + g22Γ 1

22 + g33Γ 1
33 + 2g23Γ 1

23)f1

= −[−x+ 2x(1
2)]f1 ≡ 0.

This shows that the linear functionf is always harmonic in Nil space. Now applyingLemma
3.7we see thatf is 1-harmonic if and only if it is horizontally homothetic, which, byLemma
3.5, is equivalent to

g(∇f,∇|∇f |2) = A(2xC2 + 2BC) ≡ 0.

From this equation we obtain Statement of (I).
For Statement (II), we first note that forf(x, y, z) = Ax+ By+ C(z − xy/2), we have

(f1, f2, f3) = (A − Cy/2, B − Cx/2, C), and hencef is a submersion sinceC 	= 0. A
direct computation gives

λ2 = |∇f |2 = (A− 1
2Cy)2 + (B − 1

2Cx)2 + C2(1 + x2)+ 2Cx(B − 1
2Cx)

and

+f = gijfij − gijΓ kij fk = g11f11 + g22f22 + g33f33 + 2g23f23

− (g11Γ 1
11 + g22Γ 1

22 + g33Γ 1
33 + 2g23Γ 1

23)f1 = −[−x+ 2x(1
2)]f1 ≡ 0.

It follows that the quadratic functionf(x, y, z) = Ax+ By+ C(z − xy/2) is a harmonic
function on Nil space. It is easily checked that

g(∇f,∇|∇f |2) = gijfi(λ
2)j ≡ 0,

i.e.,f is also horizontally homothetic, so, byCorollary 3.6it is also a 1-harmonic submer-
sion. Therefore we obtain Statement of (II). In particular, whenA = B = 0, andC = 1
we see that the foliationF = {z = xy/2 + t}t∈R by parallel hyperbolic paraboloids is a
minimal foliation. �

I am grateful to the referee for informing me the works[6,7,27]on the study of minimal
surfaces on the three-dimensional Heisenberg space which lead to the following remark.
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Remark 3.12.

(i) The three-dimensional Heisenberg space is the two-step nilpotent Lie group endowed
with a left-invariant metric which can be identified with(R3, g), where the metric,
with respect to the standard coordinatesX, Y,Z in R

3, can be written asg = dX2 +
dY2 + [dZ + (Y dX − X dY)/2]2. We can check thatϕ : (R3, g) → (R3, gNil ) with
ϕ(X, Y,Z) = (X, Y, Z + XY/2) is an isometry between the Heisenberg space and Nil
space. It follows from[27] that there is no totally geodesic surface in the Heisenberg
space hence all the foliations given inTheorem 3.11are non-totally geodesic minimal
foliations.

(ii) Bekkar [7] studied the minimal graph equation in the three-dimensional Heisenberg
space and he showed that the hyperbolic paraboloidZ = XY/2 is a minimal surface
in the Heisenberg space. Using the fact (see e.g.[6]) that the translations along any
axes are isometries in the Heisenberg space one concludes that the family of “parallel”
paraboloids produce a minimal foliation of the Heisenberg space. Note that under
the isometryϕ given in (i) above this foliation corresponds to the minimal foliation
{z = xy+ t|t ∈ R} in Nil space. In fact, one can check that this and the one stated
in (II) of Theorem 3.11are the only two minimal foliations in Nil space produced by
parallel hyperbolic paraboloids given byz = cxy, wherec is a constant.

4. Minimal foliations and rigidity of metrics

One fundamental problem in the study of foliations is to find Riemannian metrics on a
manifold that turn a given foliation into a minimal foliation (see e.g.[17]). In this section,
we study the links between the existence of minimal foliations by hypersurfaces and rigidity
of metrics on Riemannian manifolds. Following[12] we call a foliation of ann-dimensional
manifold with all leaves diffeomorphic toRn−1 a plane foliation.

Lemma 4.1. Let (Mm, g) be a Riemannian manifold andU ⊂ M be a local coordinate
neighborhood with coordinates{xi}. LetCk denote the kth coordinate plane foliation{xk =
c} of (U, gU). Then

(i) Ck is a totally geodesic foliation if and only ifΓ kij = 0 for anyi, j ∈ {1,2, . . . , m}\{k},
(ii) Ck is a Riemannian foliation if and only ifgkk = gkk(xk), i.e., gkk is a function ofxk

alone, and
(iii) Ck is a minimal foliation if and only if

gijΓ kij + 1

2

gik∂ig
kk

gkk
= 0. (9)

Proof. Let f : U → R, f(x1, . . . , xm) = xk denote thekth coordinate function which
is clearly a submersion. Note that the coordinate hypersurfacesxk = c are just the level
hypersurfaces off . It follows from [31, p. 168]that Ck is a totally geodesic foliation if
and only if Hessf (X, Y) = 0 for any vector fieldsX, Y ∈ ΓL, whereΓL denotes the
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subbundle tangent to the leaves, i.e., the hypersurfaces. Sincef(x1, . . . , xm) = xk we have
thatΓL = span{∂i}i	=k and that

Hessf (∂i, ∂j) = ∂i∂jf − (∇∂j∂i )f = −Γ lij∂lf = −Γ kij = 0

for anyi, j 	= k, which gives Statement (i). To prove Statement (ii), we note that Theorem
8.9 in [31] implies that the level hypersurfaces of a submersionf : (M, g) → R form a
Riemannian foliation on(M, g) if and only ifX(|∇f |2) = 0 for any vector fieldX ∈ ΓL.
Form this and the fact that the coordinate functionf : U → R, f(x1, . . . , xm) = xk is a
submersion with|∇f |2 = gkk andΓL = span{∂i}i	=k we obtain Statement (ii). Finally, by
Theorem 3.4we see that the foliation of the coordinate hypersurfacesxk = c is minimal if
and only if thekth coordinate functionf(x1, . . . , xm) = xk is 1-harmonic. Again, an easy
computation turns the 1-harmonic equation+f−df(grad( ln |∇f |)) = 0 for the coordinate
functionf(x1, . . . , xm) = xk into Eq. (9)which gives Statement (iii). �

It is well known that onR3 all the coordinate plane foliations are totally geodesic and
hence minimal foliations with respect to the standard Euclidean metric.Theorem 3.11
shows that Nil metric also has the property that all coordinate plane foliations are minimal.
The following proposition and the corollary show that Sol space, another one of the eight
three-dimensional geometries, has the same property.

Proposition 4.2. Let(R3, gSol) denote Sol space, where the metric can be written asgSol =
e2z dx2 + e−2z dy2 + dz2 with respect to the standard coordinates(x, y, z) in R

3. Then a
linear functionf(x, y, z) = Ax+ By+ Cz on(R3, gSol) is always a harmonic function, it
is horizontally homothetic and hence a p-harmonic function for anyp ∈ [1,∞) if and only
if eitherC = 0 orA = B = 0. In particular, a plane foliation{Ax+ By+ Cz= t}t∈R is a
minimal foliation on(R3, gSol) if and only if eitherC = 0 or A = B = 0.

Proof. A direct computation gives the following components of Sol metric and the coeffi-
cients of the connection:

g11 = e2z, g22 = e−2z, g33 = 1, all other gij = 0; g11 = e−2z,

g22 = e2z, g33 = 1, all other gij = 0; Γ 1
11 = Γ 1

22 = Γ 1
33 = Γ 1

23 = 0;
Γ 2

11 = Γ 2
22 = Γ 2

33 = Γ 2
13 = 0; Γ 3

11 = −e2z, Γ 3
22 = e−2z, Γ 3

33 = 0.

(10)

Now for linear functionf(x, y, z) = Ax+ By+ Cz, we have(f1, f2, f3) = (A,B,C):
λ2 = |∇f |2 = A2 e−2z + B2 e2z + C2

and

+f = gijfij − gijΓ kij fk = −(g11Γ 3
11 + g22Γ 3

22)f3 = −[e−2z(−e2z)+ e2z e−2z]C ≡ 0.

This shows that any linear function on(R3, gSol) is a harmonic function. ByLemma 3.5, f
is horizontally homothetic if and only if

g(∇f,∇|∇f |2) = gijfi(λ
2)j = C(−2A2 e−2z + 2B2 e2z) ≡ 0.
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This, together withTheorem 3.4, completes the proof of the proposition. �

FromProposition 4.2andLemma 4.1we obtain the following corollary.

Corollary 4.3. Let (R3, gSol) be Sol space withgSol = e2z dx2 + e−2z dy2 + dz2 with
respect to the standard coordinates(x, y, z) in R

3.Then the x- and y-coordinate functions are
horizontally homothetic harmonic functions(which are not Riemannian submersions) whose
fibers determine totally geodesic foliations of Sol space; whilst the z-coordinate function is
a harmonic Riemannian submersion whose fibers yield a minimal and Riemannian foliation
which is not totally geodesic.

Example 4.4. Let (Hm, x−2
m

∑m
i=1 dx2

i ) denote the hyperbolic space of upper-half-space
model withHm = R

m−1 × R
+. Then

(I) All the firstm− 1-coordinate functionsf(x1, . . . , xm) = xk(k 	= m) are horizontally
homothetic harmonic so they are 1-harmonic submersions. Therefore, all the first
m − 1-coordinate plane foliations are minimal foliations. In fact, they are all totally
geodesic foliations.

(II) The xm-coordinate plane foliation is a Riemannian foliation which is not minimal.

All the above conclusions are direct consequences ofTheorem 3.4, Lemma 4.1and the
following components of metric and the coefficients of connection:

gij = δij

x2
m

, gij = x2
mδij ; Γmii = −Γ iim = −Γ imi =

1

xm
(i 	= m),

Γmmm = − 1

xm
, all other Γ kij = 0.

For example, for thexm-coordinate functionf(x1, . . . , xm) = xm, we have

gijΓmij + 1

2

gim∂ig
mm

gmm
= (m− 1)xm 	= 0.

Therefore, it follows fromLemma 4.1that thexm-coordinate plane foliation is not minimal.
However, byLemma 4.1, it is a Riemannian foliation sincegmm = x2

m.

Example 4.4shows that the hyperbolic metricx−2
m

∑m
i=1 dx2

i on the connected open subset
Hm of R

m admitsm−1 minimal coordinate plane foliations. Our next theorem shows that,
up to a homothety, the hyperbolic metric is the unique complete conformally flat non-flat
metric on a connected open subset ofR

m that has this property.

Theorem 4.5. LetU ⊂ R
m be an open and connected subset, {xi} be the standard orthog-

onal coordinates onRm. Then,

(I) A conformally flat metricgU = F−2∑m
i=1 dx2

i onU admits m minimal coordinate
plane foliations if and only ifF(x) is a constant, or equivalently, gU is a flat metric
on U.
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(II) For m ≥ 3, a complete conformally flat non-flat metricgU = F−2∑m
i=1 dx2

i on U
admitsm− 1 minimal coordinate plane foliations if and only if(U, gU) ≡ (Hm, x−2

m∑m
i=1 dx2

i ) up to a homothety.
(III) For m ≥ 3, a complete conformally flat non-flat metricgU = F−2∑m

i=1 dx2
i on U

admits one Riemannian coordinate plane foliation if and only if(U, gU) ≡ (Hm, x−2
m∑m

i=1 dx2
i ) up to a homothety.

Proof. For Statement (I), we first notice that the sufficiency is clearly true because each of
them-coordinate plane foliations ofU is actually totally geodesic and hence minimal with
respect to the standard Euclidean metric. Conversely, If each of them-coordinate plane
foliations is minimal, then byLemma 4.1we haveEq. (9) for k = 1,2, . . . , m. Using
coordinate{xi} we can write the components ofgU and the coefficients of connection as

gij = F−2δij , gij = F2δij .

Γ iii = −fi = −Γ ijj , Γ iij = Γ iji = −fj(i 	= j);
all otherΓ ijk = 0, wheref = ln F. (11)

SubstitutingEq. (11)into Eq. (9)we have(m− 1)FFk = 0 for anyk = 1,2, . . . , m. Since
m ≥ 2 we haveFk = 0 for anyk = 1,2, . . . , m. Therefore we conclude thatF is constant,
which gives Statement (I).

To prove Statement (II), we assume, without loss of generality, that the first(m −
1)-coordinate plane foliationsCi(xi = constant fori = 1,2, . . . , m − 1) are minimal.
Then, as in the above proof of Statement (I),Fk = 0 for anyk = 1,2, . . . , m−1. It follows
thatF = F(xm), i.e., it depends only onxm. This, together with(11), shows thatΓ kij = 0 for
anyi, j 	= k (k 	= m). Therefore by (i) ofLemma 4.1we conclude that the coordinate plane
foliationsCk (k = 1,2, . . . , m − 1) are actually totally geodesic. Sincexi are orthogonal
coordinates and the conformally flat metricgU preserves orthogonality, we conclude that
Ck(k = 1,2, . . . , m−1) are mutually orthogonal families of totally geodesic hypersurfaces
in (U, gU). It was proved in[19] that anm-dimensional Riemannian manifold has negative
constant sectional curvature if and only if it admitsm − 1 orthogonal families of totally
geodesic hypersurfaces. Therefore, we see thatgU = F−2(xm)

∑m
i=1 dx2

i has negative con-
stant sectional curvature which we denote byK. On the other hand, it is well known (see e.g.
[29, p. 338]) that a conformally flat metricF−2∑m

i=1 dx2
i has constant sectional curvature

K if and only if

fjk + fjfk = 0, j 	= k, (12)

f 2
ii + f 2

jj −
∑
k 	=i,j

f 2
k = K

F2
, (13)

wheref = ln F . UsingEq. (13)and the fact thatF(x1, . . . , xm) = F(xm) and thatm ≥ 3,
we haveFm = ±√−K. Solving these equations we getF(xm) = ±√−Kxm − b for some
constantb. Now, by connectedness ofU and completeness ofgU , we have that(U, gU)must
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be either one of the upper half spaces:(
R
m−1 ×

(
b√−K,∞

)
, (

√−Kxm − b)−2
m∑
i=1

dx2
i

)
,

(
R
m−1 ×

(
− b√−K,∞

)
, (

√−Kxm + b)−2
m∑
i=1

dx2
i

)
;

or, one of the lower half spaces(
R
m−1 ×

(
−∞, b√−K

)
, (

√−Kxm − b)−2
m∑
i=1

dx2
i

)
,

(
R
m−1 ×

(
−∞, −b√−K

)
, (

√−Kxm + b)−2
m∑
i=1

dx2
i

)
.

It is easy to check that each of the above spaces is homothetic to the standard upper half-space
model of the hyperbolic space(Hm, x−2

m

∑m
i=1 dx2

i ). Thereby establishing Statement (II).
For Statement (III), we have seen inExample 4.4that the standard hyperbolic space

(Hm, x−2
m

∑m
i=1 dx2

i ) admits one Riemannian coordinate plane foliation, i.e., themth co-
ordinate plane foliation. Conversely, we assume, without loss of generality, that themth
coordinate plane foliation is a Riemannian foliation. Then by (ii) ofLemma 4.1we have
thatgmm = F2 depends only onxm. This, together with(11), implies thatΓ kij = 0 for any
i, j 	= k(k 	= m). Therefore by (i) ofLemma 4.1, we conclude that the firstm−1-coordinate
plane foliationsCk(k = 1,2, . . . , m−1) are totally geodesic, and hence minimal foliations.
Applying Statement (II) we obtain Statement (III). �
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